Study In Vivo Intraocular Biocompatibility of In Situ Gelation Hydrogels: Poly(2-Ethyl Oxazoline)-Block-Poly(ε-Caprolactone)-Block-Poly(2-Ethyl Oxazoline) Copolymer, Matrigel and Pluronic F127

نویسندگان

  • Yih-Shiou Hwang
  • Ping-Ray Chiang
  • Wei-Hsin Hong
  • Chuan-Chin Chiao
  • I-Ming Chu
  • Ging-Ho Hsiue
  • Chia-Rui Shen
چکیده

The long term in vivo biocompatibility is an essential feature for the design and development of sustained drug release carriers. In the recent intraocular drug delivery studies, hydrogels were suggested as sustained release carriers. The biocompatibility test for these hydrogels, however, was commonly performed only through in vitro cell culture examination, which is insufficient before the clinical applications. We compared three thermosensitive hydrogels that have been suggested as the carriers for drugs by their gel-solution phase-change properties. A new block terpolymer (PEOz-PCL-PEOz, ECE) and two commercial products (Matrigel® and Pluronic F127) were studied. The results demonstrated that the ocular media remained translucent for ECE and Pluronic F127 in the first 2 weeks, but cataract formation for Matrigel occurred in 2 weeks and for Pluronic F127 in 1 month, while turbid media was observed for both Matrigel and Pluronic F127 in 2 months. The electrophysiology examinations showed significant neuroretinal toxicity of Matrigel and Pluronic F127 but good biocompatibility of ECE. The neuroretinal toxicity of Matrigel and Pluronic F127 and superior biocompatibility of ECE hydrogel suggests ECE as more appropriate biomaterial for use in research and potentially in intraocular application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic design and application of unimolecular star-like block copolymer micelles: a coarse-grained simulation study.

Unimolecular polymeric micelles have several features, such as thermodynamic stability, small particle size, biocompatibility, and the ability to internalize hydrophobic molecules. These micelles have recently attracted significant attention in various applications, such as nano-reactors, catalysis, and drug delivery. However, few attempts have explored the formation mechanisms and conditions o...

متن کامل

Self-Assembly of Double Hydrophilic Poly(2-ethyl-2-oxazoline)-b-poly(N-vinylpyrrolidone) Block Copolymers in Aqueous Solution

The self-assembly of a novel combination of hydrophilic blocks in water is presented, namely poly(2-ethyl-2-oxazoline)-b-poly(N-vinylpyrrolidone) (PEtOx-b-PVP). The completely water-soluble double hydrophilic block copolymer (DHBC) is formed via copper-catalyzed polymer conjugation, whereas the molecular weight of the PVP is varied in order to study the effect of block ratio on the self-assembl...

متن کامل

"Grafting-from" synthesis and characterization of poly (2-ethyl-2-oxazoline)-b-poly (benzyl L-glutamate) micellar nanoparticles for potential biomedical applications

Introduction: Recent advances in the field of poly (2-oxazolines) as bio-inspired synthetic pseudopeptides have proven their potential biomedical applications such as drug delivery and tissue engineering. Methods: In order to fabricate a biodegradable micellar nanoparticle of poly (2-ethyl 2-oxazoline)-b-poly (benzyl L-glutamate) or pEOx-b-pBLG, "grafting-from" synthesis approach was used invol...

متن کامل

Synthesis of Amphiphilic Block Copolymers for Use in Biomedical Applications

The research presented in this thesis focuses on the synthesis of three amphiphilic block copolymer systems containing poly(ethylene oxide) (PEO) blocks. The polymer systems were developed for use in biomedical applications. The first of these is a series of poly(ethylene oxide-b-oxazoline) (PEO-b-POX) diblock copolymers for use in the progress towards novel nonviral gene transfer vectors. Poly...

متن کامل

Crystallisation-driven self-assembly of poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) above the LCST.

The solution behaviour in water of a polyoxazoline-type block copolymer, namely poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline), denoted as P(iPrOx-b-MeOx), above the lower critical solution temperature (LCST) of the PiPrOx block was exploited to induce a temporary or permanent self-assembly. Spherical micelles were first obtained and could be disassembled in a reversible manner ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013